Justifing text in poster using column
In a Poster i want to justified mt text whish is in a column. I tried searching for a solution but did not find one. Here is a minimum working example:
\begin{column}{.479\textwidth}
\begin{Partie}{2.Word Symmetric Functions \vspace{-.17em}}
\textbf{2.1 Basic definitions and properties}
\begin{itemize}
\item A set partition of size $n$ is a set of disjoint subsets whose union is $\{1, 2, \dots, n\}$ (we will denote $\pi \vDash n$).
$$ \{\{1\},\{2\},\{3\}\}, \{ \{1\}, \{2,3\} \}, \{ \{2\}, \{1,3\} \}, \{ \{3\}, \{1, 2\} \}, \{ \{1, 2, 3\} \} $$
\item The algebra $\WSym$ \cite{RS} is generated by $\Phi:\{\Phi^{\pi}\}$
and $M_{\pi}$, the word power sum functions and word monomial functions,
whose elements are indexed by set partitions of $\{1, \dots, n\}$ defined by:
$ \Phi^{\pi} = \sum_{\substack{\pi \leqslant \pi'}} M_{\pi'} $ when $\pi
\leqslant \pi'$ ($\pi$ is finer than $\pi'$).
\item $\WSym$ is a Hopf algebra:
\begin{itemize}
\item The shifted concatenation product: $ \Phi^\pi\Phi^{\pi'}
= \Phi^{\pi\pi'[n]} $
\item The coproduct : $\Delta M_\pi
= \sum_{\substack{\pi'\cup\pi''=\pi\\\pi'\cap\pi''=\varnothing}}
M_{\mathrm{std}(\pi')} \otimes M_{\mathrm{std}(\pi'')}$
\end{itemize}
\item The coproduct of $\WSym$ consists of identifying the algebra $\WSym
\otimes \WSym$ with $\WSym(\mathbb{A} + \mathbb{B})$ when $\mathbb{A}$
and $\mathbb{B}$ are two non commutative alphabets \cite{HNT}.
\end{itemize}
\end{Partie}
\end{column}
In a Poster i want to justified mt text whish is in a column. I tried searching for a solution but did not find one. Here is a minimum working example:
\begin{column}{.479\textwidth}
\begin{Partie}{2.Word Symmetric Functions \vspace{-.17em}}
\textbf{2.1 Basic definitions and properties}
\begin{itemize}
\item A set partition of size $n$ is a set of disjoint subsets whose union is $\{1, 2, \dots, n\}$ (we will denote $\pi \vDash n$).
$$ \{\{1\},\{2\},\{3\}\}, \{ \{1\}, \{2,3\} \}, \{ \{2\}, \{1,3\} \}, \{ \{3\}, \{1, 2\} \}, \{ \{1, 2, 3\} \} $$
\item The algebra $\WSym$ \cite{RS} is generated by $\Phi:\{\Phi^{\pi}\}$
and $M_{\pi}$, the word power sum functions and word monomial functions,
whose elements are indexed by set partitions of $\{1, \dots, n\}$ defined by:
$ \Phi^{\pi} = \sum_{\substack{\pi \leqslant \pi'}} M_{\pi'} $ when $\pi
\leqslant \pi'$ ($\pi$ is finer than $\pi'$).
\item $\WSym$ is a Hopf algebra:
\begin{itemize}
\item The shifted concatenation product: $ \Phi^\pi\Phi^{\pi'}
= \Phi^{\pi\pi'[n]} $
\item The coproduct : $\Delta M_\pi
= \sum_{\substack{\pi'\cup\pi''=\pi\\\pi'\cap\pi''=\varnothing}}
M_{\mathrm{std}(\pi')} \otimes M_{\mathrm{std}(\pi'')}$
\end{itemize}
\item The coproduct of $\WSym$ consists of identifying the algebra $\WSym
\otimes \WSym$ with $\WSym(\mathbb{A} + \mathbb{B})$ when $\mathbb{A}$
and $\mathbb{B}$ are two non commutative alphabets \cite{HNT}.
\end{itemize}
\end{Partie}
\end{column}
No comments:
Post a Comment